If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2-4x-1=0
a = 15; b = -4; c = -1;
Δ = b2-4ac
Δ = -42-4·15·(-1)
Δ = 76
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{76}=\sqrt{4*19}=\sqrt{4}*\sqrt{19}=2\sqrt{19}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{19}}{2*15}=\frac{4-2\sqrt{19}}{30} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{19}}{2*15}=\frac{4+2\sqrt{19}}{30} $
| x/3+11=x-5 | | 80x-4=60 | | 40=x10 | | -9=12x=13x+19 | | 13x-1=12x-16 | | |9y-14|=11y+3 | | 130x+3=15x+8 | | 2n^2+4n=28 | | -2=f+23/9 | | g(-3)=|-3^3| | | v/6+-30=-32 | | 3x-4=-x+52 | | 9(v-81)=81 | | 8x-66=14x+19 | | x^2-13x+42=9900 | | 2x²+4x+152=0 | | 5(k-90)=20 | | Y=3.6x+23 | | -2p-16p+16=-18-20p | | 1(2x+5)=-5x+4 | | 19-g=-17+g | | (3x-11)=180 | | 10-13k=-3k | | 2=t+39/6 | | (3x-11)=38 | | x/3=8=10 | | m/6+21=17 | | -56-2x=-12 | | 8(z-87)=80 | | 12+2x-x=9x+612+2x−x=9x+6 | | –3(q–2)=18 | | s+37/8=7 |